欧非句子网:专注分享好词好句
位置: 欧非句子网 / 句子精选 / 文章内容

刘徽的数学故事简短-通用100句

2024-06-09 投稿作者:风向决定发型i 点击:62

刘徽的数学故事简短

1、理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。

2、在辗转传抄的过程中,难免会出现很多的错误,加上原书中是以问题集的形式编成,文字过于简单,对解法的理论也没有科学的说明。这种状况明显地妨碍了数学科学的进一步发展。

3、《九章算术》体现了中国古代自先秦到东汉以来的数学成就。但当时没有发明印书的方法,这样好的书也只能靠笔来抄写。

4、冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方.晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。

5、割圆术与圆周率,他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。

6、由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。

7、用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。

8、他设计了一个方法,通过逐步减少每个岛屿的救济物资,直到各岛屿达到平衡为止。

9、在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9,全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”

10、刘徽原理在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。

11、华罗庚:

12、直到现在,平面几何的一些知识或者立体几何的一些定理仍然难住了一大批人,因此当国王多禄米向欧几里得讨教学习几何的捷径时,欧几里德告诉他:“在几何里面,没有为国王提供的捷径。”

13、延伸内容:古代数学的成就不仅仅体现在故事中,还包括许多重要理论和发现。

14、古人学习几何更是困难,据说当学到‘一个等腰三角形的两个底角相等’这个定理时,好多人就无论怎样都学不会了,因此这个定理又叫‘驴子的梯子’。

15、在筹式演算理论方面,先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。

16、例如,有一位叫做秦九韶的数学家,他在宋朝时期非常受欢迎。

17、数学家有趣的故事:

18、苏格拉底的数学奇遇记:苏格拉泽是一位古希腊数学家,他发现在一个正方形的四边形中,有2个等差数列。苏格拉德在其中找到一个数列,并证明了这个数列的等差性。

19、在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。

20、刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。2.祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。3.欧拉(LeonhardEuler公元1707-1783年)1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(JohannBernoulli,1667-1748年)的精心指导。欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"欧拉的父亲保罗·欧拉(PaulEuler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。"欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。4.我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿(DescartesR.,1596.3.31~1650.2.11)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。法国数学家拉格朗日(LagrangeJ.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"这些伟人的话,实际上都是对笛卡儿的贡献的评价。笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。5.高斯(C.F.Gauss,1777.4.30~1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.VonHumboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。6.毕达哥拉斯(Pythagoras,572BC?~497BC?),古希腊数学家、哲学家。毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。7.钱学森1911年出生在上海市,1934年毕业于上海交通大学。他为了更好地报效祖国,于1935年考取美国麻省理工学院进行深造学习,并于1936年转入加州理工学院继续学习,并拜著名的航空科学家冯·卡门为师,学习航空工程理论。钱学森学习十分努力,三年后便获得了博士学位并留校任教。在冯·卡门的指导下,钱学森对火箭技术产生了浓厚的兴趣,并在高速空气动力学和喷气推进研究领域中突飞猛进。不久,经冯·卡门的推荐,钱学森成了加州理工学院最年轻的终身教授。从1935年到1950年的15年间,钱学森在学术上取得了巨大的成就,生活上享有丰厚的待遇,但是他始终想念着自己的祖国。1950年朝鲜战争爆发,钱学森想回国报效祖国的愿望落空了,钱学森因为是中国人而遭到了迫害。直到1955年6月,钱学森写信给当时的全国人大常委会副委员长陈叔通同志,请求党和政府帮助他早日回到祖国的怀抱。周总理得知后非常重视此事,并指示有关人员在适当时机办理此事。经过努力,1955年10月18日,钱学森一家人终于回到阔别20年的祖国。不久,他便被任命为中国科学院力学研究所所长。为了提高我国的国防能力,保卫我们国家的安全,1956年10月8日,我国第一个导弹研究机构――国防部第五研究院成立,钱学森被任命为第一任院长。在钱学森的指导下,经过艰苦的努力,1960年10月,我国第一枚国产导弹终于制造成功。

21、小故事:小马虎数鸡

22、诺伯特维纳的故事

23、其中一些故事包括著名的“海伦公主问题”,古希腊数学家欧几里得的《几何原本》中的证明故事,以及中国古代算术家朱世杰的“朱世杰算经”等。

24、同时,这个问题也引发了很多现代数学领域(如游戏论和博弈论)的研究。

25、古希腊时期,有一个年轻的数学家在做边长为一的等腰直角三角形,他发现根据勾股定理,斜边无论怎样,也不是一个整数,他把他的发现告诉权威,因为无理数超出了当时的认知,数学家和信徒把青年人杀害了。

26、老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

27、刘徽(约公元225年—295年),汉族,山东邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

28、陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。

29、在世界数学史上,许多国家的数学家都曾经把圆周率作为重要研究课题,为求出它的精确数值作了很大努力。在某种意义上说,一个国家历史上圆周率精确数值的准确程度,可以衡量这个国家数学的发展情况。

30、刘徽——中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的数学遗产。

刘徽的数学故事简短

31、+99+98+97+96+.....+4+3+2+1

32、他和他的学生李冶一起发明了一种叫做“算法盘”的计算工具,可以帮助人们进行高精度的算术计算。

33、高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:

34、高斯(1777~1855),德国著名科学家,出生于一个贫困家庭。高斯在会说话之前就学会了计算自己。三岁的一天晚上,他看着父亲在计算工资时纠正父亲的错误。

35、刘徽自幼熟读《九章算术》,在魏陈留王景元四年(263)前后,为我国古代数学经典著作《九章算术》作注,做了许多创造性的数学理论工作,对我国古代数学体系的形成和发展影响很大,在数学史上占有突出的地位。

36、《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。

37、当他长大后,他成为我们这个时代最杰出的天文学家和数学家。他对物理电磁学做出了一些贡献。现在有一个电磁学单位是以他的名字命名的。数学家称他为“数学王子”。

38、因为在古代,数学是一门非常重要的学科,也有很多杰出的数学家。

39、=101+101+101+.....+101+101+101+101

40、这个故事展示了古代中国人民智慧的一面。

41、趣味数学小故事:数学天才高斯

42、陈景润:

43、在《九章算术开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。

44、拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

45、我国古代有一个数学家,名字叫刘徽,他是三国时期的人,他提出了计算圆周率的科学方法"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接九十六边形,求得π=3.14。

46、总之,激发了人们对数字、算法、问题思考等方面的兴趣,这些思想在后来的数学发展中发挥了重要的作用。

47、来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗?”“

48、于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效。他发明了亘古未有的“割圆术”。他沿着割圆术的思路,从圆内接正六边形算起,边数依次加倍,相继算出正12边形,正24边形……直到正192边形的面积,得到圆周率兀的近似值为157/50(3.14);后来,他又算出圆内接正3072边形的面积,从而得到更精确的圆周率近似值:π≈3927/1250(3.1416)。

49、有很多,我来分享一下其中的一个:《海岛问题》。

50、在勾股理论方面逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。

51、刘徽,他是三国时代魏国人。关于他的身世和生平事迹,由于资料有限,我们了解得很少。他的活动区域大致在山东半岛和江苏北部一带。

52、谁会想到,在一般人看来非常普通的事情,却触发了刘徽智慧的火花。他想:“石匠加工石料的方法,可不可以用在圆周率的研究上呢?”

53、家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

54、这个故事的意义在于展示了古代数学家们运用数学方法解决现实问题的能力和创造性。

55、刘徽在《九章算术注》中,最主要的贡献是创立了“割圆术”,为计算圆周率建立了严密的理论和完善的算法,开创了圆周率研究的新阶段。

56、从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

57、春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

58、共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于<5050>

59、尤其可贵的是,他还做了许多创造性的工作,提出了不少远远超过原著的新理论。可以说,刘徽的数学理论工作为建立具有独特风格的我国古代数学科学的理论体系,打下了坚实的基础。

60、祖冲之:

刘徽的数学故事简短

61、存在很多。

62、这个方法被称为“杨辉三角”的起源。

63、+2+3+.....+97+98+99+100=?

64、例如,古希腊数学家毕达哥拉斯提出的毕达哥拉斯定理、埃及数学家应用算筹推导出的分数表示法、以及印度数学家发明的0这个数字。

65、在《九章算术方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。

66、他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁!

67、他的主要著作有《九章算术注》10卷;《重差》1卷,至唐代易名为《海岛算经》《九章重差图》卷。可惜后两种都在宋代失传。

68、总的来说,不仅有趣,而且还有很高的历史和文化价值。

69、这些理论和发现对后世的数学发展产生了深刻的影响。

70、出身范阳祖氏。一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。

71、这个故事讲述了数学家杨辉(公元约1238年-约1298年)在中国南宋时期,应该如何分配救济物资来平衡不同海岛居民的需求。

72、八岁的高斯发现了一个数学定理

73、在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。

74、世纪著名数学家诺伯特·维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。

75、高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。

76、直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。

77、他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?

78、他认为,一个正方形的面积应该等于这个正方形两条对角线上的数字乘积的一半。

79、我国古代的刘徽他为了圆周率的计算一直潜心钻研着。一次,刘徽看到石匠在加工石头,觉得很有趣就仔细观察了起来。“哇!原本一块方石,经石匠师傅凿去四角,就变成了八角形的石头。再去八个角,又变成了十六边形。”一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱。

80、那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……

81、高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

82、拉格朗日:

83、刘徽为《九章算术》作注,在很大程度上弥补了这个重大的缺陷。在《九章算术注》中,他精辟地阐明了各种解题方法的道理,提出了简要的证明,指出个别解法的错误。

84、通过这种方法,他可以轻松地计算出任意大小的正方形的面积。

85、刘徽的这一生都在为数学刻苦探求。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富

86、这个故事讲述了一个农夫因为小孩子不听话而想出了一种聪明的计算方法。

87、他在一块方田舍上画出了一条对角线,并且将对角线分成了五段。

88、+2+3+4+.....+96+97+98+99+100

89、祖冲之为求得圆周率的精准数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。

90、有很多,其中一个著名的故事是《九章算术》之“方田舍算术”。

刘徽的数学故事简短

91、拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。

92、在没有计算器和电脑的时代,他们通过观察、推理和创新,创造出了许多优秀的数学方法和理论。

93、这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。

94、圆周率即圆的周长和直径的比率,它是数学上的一个重要的数据,因此,推算出它的准确数值,在理论上和实践上都有重要的意义和贡献。

95、伽利略的数学传奇:伽利莱是一位意大利数学家,他的数学理论被广泛认为是现代数学的奠基人之一。他在公元前6世纪时发现了一个等差级数,这个等差级的数列称为“伽利尔等差等比级数”。

96、有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”。

97、另外,在中国古代,还有很多著名的数学家,如刘徽、张丘建、李冶等等,他们在数学领域做出了卓越的贡献,留下了许多影响深远的数学故事。

98、祖冲之(429年-500年),字文远,范阳郡遒县(今河北省涞水县)人,南北朝时期杰出的数学家、天文学家。

99、这些故事不仅展示了数学的重要性,还反映了当时人们推进数学研究的思考方式和方法。

100、这对我们今天的学习和探索数学知识有很大的启示意义。

阅读更多

>>相关标签内容推荐:    

版权声明:本文内容为作者提供和网友推荐收集整理而来,仅供学习和研究使用。若相关内容侵犯您的合法权益时,请您联系我们,我们将根据中国法律法规和政府规范性文件,采取措施移除相关内容或相关链接。句子大全网对互联网版权绝对支持,净化网络版权环境。

4 条评论网友点评 登录后发表评论,让更多网友认识您!
最新评论
推荐图文