数学小故事ppt
1、罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。
2、他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
3、承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
4、世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
5、绳子有多长
6、喜羊羊和沸羊羊看到树上挂着一面镜子。镜子里,灰太狼指着一座钟,钟上的时间是点50分。灰太狼说:“你们知道真正的时间吗?如果你们不知道怎么做,你们就是笨蛋,如果你们知道怎么做,你们这些羊还是笨蛋!”
7、从前,有一只小兔子,在小的时候,兔妈妈给她讲《阿凡提的故事》
8、小明学习乘法时不够认真,连最基本的乘法口诀都不会背。有一天晚上他爸爸给他出了一道题,三乘以七等于多少,让他必须做好,他苦思冥想还是不知道,他实在没有办法,说了一句,管它三七二十一,我给它填个十八。
9、妈妈见小兔子迟迟没有回去,就到院子里来找小兔子了。小兔子把自己的秘密得意扬扬的说了出去,妈妈听了,笑着说:“来让我看看发芽了没有。”说着将钱挖了出来。小兔子一看,怎么还是一元钱?妈妈说:“故事还没有讲完,你就急着出来了,原来是种钱来了!”
10、数学有着很多的小故事,比如乘法小故事,小丽家有三个盘子,每个盘子里放四个苹果,问小丽家有多少个苹果,这是一道用数学乘法计算的应用题3×4=12
11、编数学乘法小故事,首先我们要理解乘法的意义,乘法就是求几个相同加数的和可以用乘法计算,那我们可以这样编:家里有五个盘子,每个盘子里有六颗糖,那么一共有多少个糖?就可以用5×6=30去计算。
12、无穷小是零吗?---第二次数学危机
13、暖小鸭的天数是:鸭鸭四七二十八。唐僧取经时经过九九八十一难才取得了真经。
14、数学发展史上的三次危机
15、乘法算式
16、数学老师问小强,你口袋有5块糖,给了大熊2块,还有多少块?小强说,0块,数学老师说,你不懂数学,小强说,你不懂大熊。
17、数学小故事从前有个小1,特别调皮,他爱上了小0,于是小1就天天跟小0走一起,最后他们成了10.
18、无理数的发现---第一次数学危机
19、年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
20、于是终结了近12年的刻苦钻研。
21、答:暖小鸡的天数是:鸡鸡三七二十。
22、小聪一路小跑,到了服务台,他很有礼貌地说:“叔叔您好!请给我一根2厘米长的绳子,我要捆空调。”叔叔先是吃了一惊,然后笑着说:你弄错了吧?2厘米长的绳子能捆什么?是2米长的绳子吧!“小聪不好意思地拿过绳子往回跑,他想:对啊!2厘米只有两个手指那么宽,太短了,而2米=200厘米呢!怪不得叔叔笑话我
23、数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
24、大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
25、理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
26、到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
27、世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
28、喜羊羊和沸羊羊又走了一公里,他们看到一张纸,上面写着:“当你们看到这张纸的时候,你们就好好睡一觉吧,因为这是你们睡的最后一觉了45乘以11等于多少?”沸羊羊说:“这还不简单!先算45*10等于450,接下来再加45,就等于495!”然后喜羊羊说:“还有一种简单的方法,4+5等于9,把9放在4和5中间,就变成495!”
29、直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
30、导致了数学史上的第二次数学危机。
数学小故事ppt
31、所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
32、夏天到了,爸爸妈妈领着小聪去商场买空调。空调选好了,爸爸请售货员捆扎一下。不巧,售货员没有绳子了。小聪自告奋勇去服务台拿绳子。
33、年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
34、这里牛顿做了违反矛盾律的手续---先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。
35、当小兔子听到阿凡提种下16个金子变成32个金子时,便打起了小算盘:如果自己种下一元钱就会变成两元钱,种下两元钱就……。嘻嘻,这下发财了!这事不能让妈妈知道,小兔子还没听完就骗妈妈说:“妈妈我想上厕所。”
36、悖论的产生---第三次数学危机
37、喜羊羊和沸羊羊走了一公里,到了下山的路。他们又看到一张纸,上面画着3个等边三角形,没有交叉,请问里面有多少个角,其中有多少个直角?然后沸羊羊就说:“这还不简单。”喜羊羊说:“每个三角形有3个角,有3个三角形就是三三得九,有9个角。等边三角形一个直角都没有。”
38、小数点看到20在欺负10,于是就偷偷的来到20的身边,跑到2和0之间,于是20就变成了2.0
39、沸羊羊想了很久,说:“在镜子里看到的时间,不就是10点50分吗?”喜羊羊说:“镜子里看到的物体跟实际物体是相反的。”沸羊羊说:“那会不会是2点20分呢?”喜羊羊说:“不。实际的时间和镜子里的时间加起来是12点。”沸羊羊也开窍了,说:“我明白了,实际时间是1点10分。”
40、不等妈妈回答,小兔子拿起一元钱就冲出房门到院子里,找到一个花盆,把钱埋了进去……
41、数学小故事有一次陈景润去理头发,他是38号,理头发还早着呢!于是他去了图书馆,忘了理发,38号的牌子还在口袋里呢!
42、第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!
43、妈妈又将半个故事将给小兔子听。哈哈,原来阿凡提种金子是为了对付大财主而想出的计谋哇!